Lyman-alpha Solar Telescope

inflight calibrations and data analysis guide

Li Feng, Hui Li, Ying Li, Yu Huang and the ASO-S/LST science team Email: lfeng@pmo.ac.cn Purple Mountain Observatory, CAS

ASO-S/LST payload and relevant HI Lya and 360nm observations

Inflight calibrations

Data analysis guide

Lyman-alpha Solar Telescope (LST)

LST instruments

SCI: Solar Co SDI: Solar Di WST: White-l	rona Imager sk Imager ight Solar Telescope	LST FMG		
SCI does not we is under investig sometimes obse and CMEs in Ly	ork as expected. The reason gation. However, it can rve eruptive prominences $y\alpha$.	Satellite platform		SDI WST
parameters	WST	SDI	SCIUV	SCIWL
waveband	$360\pm2nm$	121.6±4.5nm	122.6±3nm	$700\pm32nm$
FOV	0 – 1.2 Rs	0 – 1.2 Rs	1.1 - 2.5 Rs	1.1 - 2.5 Rs
Image size	4608×4608	4608×4608	2048×2048	2048×2048
cadence	routine (2min) burst (1s & 2s / 5s)	routine (1min) burst (a few s/15s)	Li+(2019) Feng+(201	, Chen+(2019) 19) RAA

Optical Design of SDI and WST

Off-axis Two-Mirror Reflective structure

SDI:

Two Ly α filters from Acton at the entrance One Ly α filter on the filter wheel before the detector WST: fused silica glass as incident window entrance

SDI and WST daily movies

LST/WST 360nm at 2023-04-03T00:00:23.041

SDI: HILy α line

k, Co II K line H_a (wing) Imm 600 µm C (109.8 nm) Si(152.4 nm) Fe.Si (157.5 nm) Si(168.1 nm) $L_{\alpha}(5Å)$ 1000 500 0 h (km) 10-2 10 10-1 m (a cm

637

FIG. 1.- The average quiet-Sun temperature distribution derived from the EUV continuum, the La line, and other observations. The approximate depths where the various continua and lines originate are indicated.

Vernazza J.E., Avrett E.H., and Loeser R. The Solar Chromosphere. III. Models of the EUV Brightness Components of the Oujet Sun. The Astrophysical Journal Supplement Series, 45:635-725, 1981 April,

line wing : chromosphere ($T \sim a \text{ few } kK$) line center: transition region (T~40000K)

H I Ly α emission at higher attitudes

(a)Ly α radiative component: Photo-excitation of the residual coronal neutral hydrogen atoms by the incident chromospheric $Ly\alpha$ emission (E-corona) (b) $Ly\alpha$ collisional component: Electron impact excitation of the residual coronal neutral hydrogen atoms (E-corona)

Collisional

Imaging instruments observing in $Ly\alpha$: disk imager

Rocket-borne MSSTA, MXUVI

Rocket-borne VAULT

Berghmans+(2023)

TRACE,

Solar Orbiter / EUILya

Imaging instruments observing in Ly α : coronagraph

Gabriel 1971 rocket observations

SolO/Metis: white light and $Ly\alpha$ corongraph

WST: 360nm

Gallery of LST observations

Movies of some eruptive events

X-class Flare

wave

Movies of some eruptive events

filament

Prominence

Movies of some eruptive events

WST 360 nm Running Difference

LST Scientific Objectives

- What is the relationship between solar flares, CMEs and eruptive prominences?
 What triggers solar flares and CMEs, and how do their parameters evolve during the eruptive process?
- What are the acceleration mechanisms of CMEs in the inner corona? What are their kinetic behaviors?
- How are shock waves formed and what favors the acceleration of solar energetic particles (SEPs) by shock waves?
- What are the physical properties and processes of white-light flares (WLFs)?

Ly α , H α , and 30.4nm

rocket-borne MXUVI November 2, 1998

Ly α , H α , and 30.4nm

Ly α , H α , and 30.4nm

Prominences in $Ly\alpha$ – optically thick regime

POS electron density

POS temperature

Zhao, Zhang+,2022

1.02 1.04 1.06 1.08 1.10 1.12

1D NLTE radiative transfer code - PRODOP

The Ly α line intensity and optical thickness are computed in the region with density larger than 1X10⁹ cm⁻³ and temperature less than 100 000K.

Prominences in Ly α –

comparing optically thin and thick results

Inflight calibrations

Data analysis guide

Progresses of inflight calibrations (SDI & WST)

- 1. Dark current model
- 2. Flat field
- 3. High dynamic range image: High gain & low gain image merging
- 4. Image stabilization system for SDI
- 5. Triggering of Burst mode and automatic exposure control (AEC)
- 6. Radiometric calibration: WST (done), SDI (not yet)
- 7. Optimal detector temperature to reduce the influence of the pollution for SDI
- 8. SCI: The inflight calibrations of SCI have not been regularly performed.

Dark current model

DC (Temperature, Texp)

Dark current model as a function of detector temperature and exposure time Detector temperature: 7 values in the range $T \pm 5^{\circ}$ C Exposure time: 30 values from the minimum exposure to 120s

KLL flat field: 21 satellite pointings

KLL(Kuhn, Lin, and Loranz, 1991) flat field:

For a given target, shifting of the satellite pointing makes the imaging of the same target are at different positions of the detector. Therefore, the difference in intensity reflect the difference in quantum efficiency.

Li+(2021)

KLL flat field: one example

Effective field of view of SDI

High dynamic range (HDR) imaging

High-gain & low-gain image merging: to deal with the saturated regions in big flares

The saturated pixels in the high-gain image is replaced by the un-saturated pixels in the low-gain image

Onboard triggering and termination of burst mode

WST

SDI

cadence

routine : 2min burst triggered by SDI (1024*1024): 1s for the first 5mins & 2s for the second 5mins at maximum Burst triggered by HXI (4608*4608): 5s routine (1min) burst triggered by SDI(1024*1024): a few s burst triggered by HXI(4608*4608): 15s

Onboard triggering and termination of burst mode

over-thresholding pixels: Intensity enhancement exceeds a given threshold

$$\Psi_n(i,j) = \frac{\left[F_n(i,j) - F_{ref}(i,j)\right]^2}{F_{ref}(i,j) + g},$$

 $\gamma_n(i,j) \ge \gamma_1$

When over-thresholding pixels (NP) is NP1<NP<NP2, then the burst mode is triggered.

Lu+(2020)

Instrumental artifacts

Response of SDI to a brightening dot: a number of unwanted surrounding dots

Instrumental artifacts

WST: white-light flare

For strong white-light flares, there are extra horns due to the imperfect manufacturing of the reflective mirror.

SDI: east-west asymmetry beyond the limb

Inflight calibrations

Data analysis guide

Data analysis guide

Definition of LST data levels
 Definition of LST fits header
 LST data download
 LST data analysis demos

Definition of LST data levels (WST & SDI)

Level 0	unpacking, verification, adding keywords, etc.
Level 1 unit: DN	correcting dark current, flat field, merging high-gain and low-gain images to obtain a high- dynamic-range (HDR) image, indexing bad/missing/spike pixels;
Level 1.5 unit: DN	correcting bad/missing/spike pixels, Image registration (rotation, translation, scaling);
Level 2 unit: erg s ⁻¹ cm ⁻² sr ⁻¹	radiometric calibration;
Level 2.5 unit: erg s ⁻¹ cm ⁻² sr ⁻¹	correcting bad/missing/spike pixels; Image registration (rotation, translation, scaling)
quicklook	JPG images

Future Products: Ly α flare list

	# N:		flare numb	er									
	# DATE	:	day of obs	ervation									
÷	# STAR	т:	start time	. earliest	indicat	ion of	detec	tion					
-	# END:		end time,	last indic	ation of	detec	tion						
-	# DUR:		duration of event in unit of minute										
-	# Xpos		pixel coor	dinates al	ona hori	zontal	(X) a	xis					
	# Ypos		pixel coor	dinates al	ong vert	ical (Y) axi	S					
	# Fpos		heliograph	ic coordin	ates of	flare	positi	on					
	# SIGN		maximum in	tensity in	crease r	elativ	e to t	he backo	round. in	%			
-	# CLAS	5:	the GOES c	lass of th	e SXR fl	are			,				
		ATC	CTADT			Vnoo	Vnee	Free	CTCN(0.)				
1	1 D/	AIE 222 12 00	51AKI 12.20.12		10 0	2240	105	C12E02	51GN(%)	CLASS			
	1 20	022-12-09	12:39:12	12:57:12	14.0	2240	2126	513602	2.0	C4.1			
1	2 20	022-12-09	13:20:12	13:40:12	14.0	4032	2120		1.0	CD 0			
•	5 Zi	022-12-09	13:50:12	14:10:12	20.0	4032	2120	N25W76	1.5	C3.9			
1	4 ZI	022-12-09	10:02:12	10:00:12	4.0	4052	3204	N29W90	0.9	CI.5			
÷		022-12-09	22:41:12	23:13:12	32.0	2112	1470	S13E00	3.5	(5.0			
	D 20	022-12-10	01:14:12	01:45:12	31.0	1984	14/2	525E10	3.0	C1.3			
	/ 20	022-12-10	02:50:12	03:25:12	35.0	1984	1244	S13E10	2.0	C 4 7			
	8 20	022-12-10	10:21:12	10:37:12	10.0	1820	1344	530E15	1.0	C4./			
1	9 20	022-12-10	18:38:12	18:41:12	3.0	1088	2624	N09E39	1.0	C1 4			
	10 20	022-12-10	20:15:12	20:27:12	12.0	832	2024	N09E50	0.8	C1.4			
	12 20	022-12-10	20:40:12	21:03:12	23.0	1/28	1344	530E20	2.9	C4.8			
	12 20	022-12-11	01:13:12	01:34:12	21.0	14/2	1728	S1/E2/	1.0				
	13 20	022-12-11	09:13:12	09:26:12	13.0	576	1344	S29E90	8.2	63 0			
	14 20	022-12-11	11:30:12	11:52:12	22.0	576	2496	N05E63	1.2	(2.9			
	15 20	022-12-11	15:46:12	15:49:12	3.0	576	2624	N09E64	1.2	C1.2			
	16 20	022-12-12	00:55:12	00:59:12	4.0	5/6	2496	N05E63	1.3	(3.2			
	1/ 20	022-12-12	08:11:12	08:15:12	4.0	448	2496	N05E/3	0.8	~ ~			
	18 20	022-12-12	09:24:12	09:29:12	5.0	960	1216	S34E56	1.8	C2.1			
	19 20	022-12-12	15:05:12	15:20:12	15.0	3008	2880	N1/W22	2.0	03.0			
-	20 2	022-12-13	01:43:12	01:47:12	4.0	2240	1472	S26E02	0.5	C1.4			
-	21 20	022-12-13	05:40:12	05:58:12	18.0	2624	2752	N13W10	2.2				
	22 20	022-12-13	19:49:12	19:53:12	4.0	448	2624	N09E75	1.6				
	23 2	022-12-13	23:17:12	23:56:12	39.0	448	2624	N09E75	6.4	C2.9			
-	24 20	022-12-14	05:40:12	05:44:12	4.0	1088	2880	N17E40	0.7				
-	25 20	022-12-14	07:33:12	07:55:12	22.0	1088	2752	N13E40	3.4	M2.4			
-	26 20	022-12-14	21:35:12	22:34:12	59.0	832	2752	N13E51	8.6	M1.3			
-	27 20	022-12-14	23:44:12	23:48:12	4.0	960	2880	N17E46	1.4	C7.3			
	28 2	022-12-15	01:35:12	01:40:12	5.0	704	2752	N13E57	2.4	M1.6			
	29 20	022-12-15	03:05:12	03:10:12	5.0	2752	3008	N20W14	1.4	C4.2			
	30 20	022-12-15	05:21:12	05:41:12	20.0	832	2752	N13E51	1.4	C7.6			
	31 20	022-12-15	06:58:12	07:19:12	21.0	832	2880	N17E52	3.9	M2.3			
	32 20	22-12-15	07:56:12	08:28:12	32.0	832	2752	N13F51	2.7	M1.0			

To be included: white-light flare (WST)

Future Products: preliminary carrington maps

The Carrington map can be used as the incident emission for the $Ly\alpha$ emission in the coronagraph field of view. However, due to various calibration activities, currently significant amount of data are missing.

$Ly\alpha$ radiation – radiative component

$$j_r = \frac{B_{12}h\lambda_0}{4\pi} n_i \int_{\Omega} p(\phi) d\Omega \int_0^\infty I_{ex}(\lambda - \delta\lambda) \Phi(\lambda, \vec{n}') d\lambda$$

the neutral hydrogen number density

scattering geometric function

Doppler dimming factor $$F_{\rm D}$$

Fig. 1.—Geometry of the modeling of the resonantly scattered coronal $Ly\alpha$ radiation.

F. Auchere (2005)

Nonuniform Lya chromospheric radiation $I_{ex}(\lambda - \delta\lambda)$ An empirical relation between 30.4nm and Lya radiation will be replaced by the observed LST/SDI Carrington map in Lya.

Comparison of radiative component of $Ly\alpha$ intensity under different assumptions

	Irad1	Irad2	Irad3	Irad4	Irad5		
nonuniform Lyα disk intensity	Y	uniform	Y	Y	uniform		
detailed scattering geometry	Y	Y	Sun as a point source	Y	Sun as a point source		
$T_p \neq T_e$	Y	Y	Υ	$T = T_e = T_p$	$T = T_e = T_p$		
Max uncertainty to Irad1	/	~15%	~10%	~25%	~30%		
(Irad2-Irad1)/Irad1 2 0.2 1 0.1 0 0.0 + + +	(Irad3- 2 0.15 0.10 1 0.05 0 -0.00	-lrad1)/lrad1	(Irad4-Irad1)/Irad1 2 0.3 0.2 0.1 0 -0.0 + + + +	(lrad5-lrad1)/ 2 0.3 0.2 0.1 0 -0.0 +	lrad1		

-1 -0.2

-2

-1

0

-2

2

-2

-2

-1

0

1

2

1

-1 -0.1

-0.2

-2

-1

0

1

2

-2

-1 -0.10

-7

-0.15

-2

-1

0

1

Ying+2023

2

Definition of LST fits header

				definition (Y)				archive (Y)				search (Y)				
#	Keyword	Туре	Description	LO	L1/	L2.5	(2)/3	L	L1/	L2.5	5(2)/	LO	L1/	L2.5	5(2)/3	Comment
		Basic Image Configuration Keywords and	Infor	nation	for L	evel 0	(Son	ne are	Level	1 as 1	noted)	1.5		5		
1	NAXIS	Int2	the number of axes of the overall	Y	Y	Y	Y	Y	Y	Y	Y					
	NAME	(byte)	image the total number of pixels along axis 1	v	, r	· ·		•	v	v	•	v	N	37	N	
	NAXISI	Int2	of overall image	Ŷ	Ŷ	Y	Y	Y	Y	Ŷ	Ŷ	Ŷ	Ŷ	Y	Y	
3	NAXIS2	Int2	of overall image	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
4	CAMERA	String	SCIUV, SCIWL, SDI, WST	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
5	FSN	Int4	Frame Serial Number (for 1v3.5, maximum FSN of the polarization sequence)	Y	Y	Y	Y	Y	Y	Y	Y					
6	FILENAME	String	name of the fits file	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
7	APID	String	Image application ID	Y				Y								
8	NPACKETS	Int2	Number of packets in image	Y				Y								
9	NERRORS	Bool	decompression error (T: success, F: failure)	Y				Y								
10	HEADRERR	Bool	Header error in an image	Y				Y								
11	OVERFLOW	Bool	Image oversize with size exceeding naxis1*naxis2	Y				Y								
12	BZERO	Float	offset in stored_value, if applicable If missing, then assumed to be zero	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
13	BSCALE	Float	Phys_value = BZERO + BSCALE * Stored_value, if applicable. If missing, then assumed to be one	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
14	BUNIT	String	physical units of data	Y	Y	Y	Y	Y	Y	Y	Y					
15	BTYPE	String	a description of the content of the record/file	Y	Y	Y	Y	Y	Y	Y	Y					
16	SUM_COL	Int2	Number of summed columns	Y	Y	Y	Y	Y	Y	Y	Y					
17	SUM_ROW	Int2	Number of summed rows	Y	Y	Y	Y	Y	Y	Y	Y					
18	P1COL	Int2	starting pixel along column direction for CMOS readout, (0, P1COL-1) are underscan columns	Y	¥	¥	¥	Y	¥	¥	¥					
19	P2COL	Int2	ending pixel along column direction for CMOS readout, (P2COL+1, CMOS_COL_MAX) are overscan columns	Y	¥	¥	¥	Y	¥	¥	¥					

Document of the detailed definition of the LST fits header which includes 150+keywords will be uploaded to the ASO-S website.

LST data download: Data Archive

Data Archive

The ASO-S da	ta policy can be found	l <u>here.</u>			
The SDI data	is between April 2, 20	23 and April 3, 2023	. The other data starts fi	rom April 1, 2023.	
		Start Time	04/02/2023 03:00 🛗	End Time	04/02/2023 04:00 🛗
HXI ?					
evel Q1	Hourly Fits	Hourly Png	Data-production	status Png	
evel 1	Detector Data				
MG ?					
evel	2-AR				
Iode	Routine				User-defined Cadence
ST ?					
DI Level	V 1	Background			
DI Mode	V Routine	Burst-1024	Burst-4608		User-defined Cadence s
VST Level	1				
VST Mode	Routine	Burst-1024	Burst-4608		User-defined Cadence s
lmail:	lfeng@pmo.ac.cn		Search	and Download Data	😵 Reset
Result File	e Count : 60	Prot	bable Size(KB) : 1361866		Request ID : 20230410182939184003
Det = 17	Status and Datains	-1			
Jata Export	Status and Ketriev				
lequest ID :	2023041018293918400	3	Check Status Status	: Ready	
.ink :	http://172.17.90.231:8	080/downloadPackFi	ts/20230410/2023041018	2939184003.zip	Download Link
		File Name			Download
1	sdi_le	ev10_20230402_030007.983_	v01.fits.gz		download
2	sdi_le	ev10_20230402_030107.983_	v01.fits.gz		download
3	sdi_lo	ev10_20230402_030207.983_	v01.fits.gz		download

LST data download: cutout sevice

Cutout Service

The SDI data i	is between April 2, 2023 and April	3, 2023. The other data starts	from April 1, 2023.			
	Start Tim	e 04/03/2023 07:30 🛗	End Time	04/03/2023 09:30	<u>.</u>	
LST ?						
SDI Level	O 1					
Cadence(optio	onal) User-defined Cadence	s				
WST Level	01					
Cadence(optio	onal) User-defined Cadence	S				
Cutout	Xcenter (arcsec) 800	Ycenter (arcsec)	600 Xr	range (arcsec) 600	Yrange (arcsec)	800
	Tracking (optionalk)	Reference Time:	12			
Requirement	The arcsec range for x-axis i	s between [-1150,1150]. Xrange	e>0, Xcenter-(Xrange/	2)>=-1150, Xcenter+((Xrange/2)<=1150.	
	The arcsec range for y-axis i	s between [-1150,1150]. Yrange	e>0, Ycenter-(Yrange/2	2)>=-1150, Ycenter+((Yrange/2)<=1150.	
Email:	lfeng@pmo.ac.cn	Search	📊 Submit	📚 Reset		
Result File Count : 120 Probable Size(KB) : 2648510 Request ID : 20230410181031551001						
Data Export	Status and Retrieval					
Request ID :	20230410181031551001	Check Status	Status : Ready			
Link :	http://172.17.90.231:8080/download	lCutout/20230410/2023041018	1031551001.tgz		Download Link	

LST data analysis tutorial

•

۲

pro lst_prep, ihdr, iimg, ohdr, oimg, \$

IDL on linux, windows, Mac

SolarSoftWare Dependence of

the LST package: **\$SSW/gen/**

Two procedures that users often use: IDL> read_lst, fn, ihdr, iimg IDL> lst_prep, ihdr, iimg, ohdr, oimg

<pre>pro read_lst, lstfiles, index, data, nodata=nodata, fitshead=fitshead ; ====================================</pre>	<pre>bkgimg_on = bkgimg_on, bkg_hdr = bkg_hdr, bkg_dat = bkg_dat, \$ radcalib_on = radcalib_on, \$ fix_missing_off = fix_missing_off, \$ despike_on = despike_on, la_cosmic = la_cosmic, \$ reg_off = reg_off, \$ outsize=outsize, \$ do_write_fits = do_write_fits, compress=compress, outdir = outdir, \$ status = status, quiet = quiet, _EXTRA=ex</pre>
<pre>; Read LST FITS file(s) into 2D or 3D array ; INPUTS: ; LSTFILES - LST FITS file(s) name to read ; KEYWORDS: ; (NODATA - Read in header(s) only not data</pre> ;	;+ NAME: LST_PREP
; //ISTSHEAD - If set, output string index ; ; OUTPUTS: ; ;	PROJECT: ASO-S/LST
<pre>; INDEX - Output the data header(s) ; DATA - 2D or 3D array of LST image(s) ; EXAMPLES: ; IDL> read_lst, lstfiles, index, data [,/nodata] [,/fitshead] ; NOTES: ;</pre>	PURPOSE: optional preprocessing steps of LST level 1 data including: background subtraction (usually for full-disk images), radiometric calibration, fixing missing/bad pixels,
<pre>; The input files must have the same size of data ; if multiple data are read ; HISTORY: 2021-October-12; Written by lijw (njlijw@pmo.ac.cn) ; HISTORY: 2022-April-07 ; Readfits.pro is replaced with mreadfits.pro ; HISTORY: 2022-April-12 ; Default output structure index, and add keyword "fitsheac"; </pre>	<pre>fixing cosmic-ray/spike pixels, image registration (rotation, translation, scaling) By default, 'lst_prep' fixes missing/bad pixels and does image registration. If we want to do more, e.g., background substraction, radiometric calibration, despike please set /bkgimg on, /radcalib on, /despike on, respectively.</pre>

LST data analysis tutorial: WST

```
file='/asos/data/wst/science/lev10/2023/04/03/wst_lev10_20230403_235023.595_v01.fits.gz'
read_lst, file, ihdr, iimg
lst_prep, ihdr, iimg, ohdr1, oimg1
lst_prep, ihdr, iimg, ohdr2, oimg2, outsize=4096 ;to work with e.g., SD0/HMI
;lst_prep, ihdr, iimg, ohdr2, oimg2, outsize=4096, /radcalib_on
index2map, ohdr2, oimg2, wstmap
window, 0, xsize=1800, ysize=600, retain=2
!p.multi=[0,3,1]
lst_lct, wavelnth = 3600, instr = 'wst', /load
plot_image, oimg1, dmin=0, dmax=8000, charsize=2., xtitle='X (pixel)', ytitle='Y (pixel)'
plot_image, oimg2, dmin=0, dmax=8000, charsize=2.
```

LST data analysis tutorial: WST

LST data analysis tutorial: SDI (cutout images)

```
fns=file_search('~/cutout/flare/sdi_lev10_20230403_030*cut.fits.gz')
read_lst, fns, ihdr, iimg ;dealing with a sequence of fits files
lst_prep, ihdr, iimg, ohdr1, oimg1, /despike_on, /la_cosmic, /reg_off
lst_prep, ihdr, iimg, ohdr2, oimg2, /reg_off
index2map, ohdr1[0], oimg1[*,*,0], sdimap1
index2map, ohdr2[0], oimg2[*,*,0], sdimap2
window, 0, xsize=1600, ysize=800, retain=2
!p.multi=[0,2,1]
lst_lct, wavelnth = 1216, instr = 'sdi', /load
plot_map, sdimap1, /log, dmin=20, dmax=14000, charsize=2.
plot_map, sdimap2, /log, dmin=20, dmax=14000, charsize=2.
```

LST data analysis tutorial: SDI (cutout images)

LST data analysis tutorial: SDI (full-disk images)

file='/asos/data/sdi/science/lev10/2023/04/03/sdi_lev10_20230403_084007.071_v01.fits.gz'
read_lst, file, ihdr, iimg
bkgfits = '/asos/data/sdi/bkg/2023/sdi_lev10_20230403_bkg_biweekly.fits.gz'
read_lst, bkgfits, bkg_hdr, bkg_dat
lst_prep, ihdr, iimg, ohdr, oimg, /bkgimg_on, bkg_hdr=bkg_hdr, bkg_dat=bkg_dat, /despike_on
index2map, ohdr, oimg, sdimap

```
window, 0, xsize=1600, ysize=800, retain=2
!p.multi=[0,2,1]
lst_lct, waveInth = 1216, instr = 'sdi', /load
plot_image, alog10(oimg), min=0.5, max=4.1, charsize=1.5
xyouts, 150, 150, ohdr.date_obs, charsize=2.
plot_map, sdimap, /log, dmin=40, dmax=14000, charsize=1.5
```

LST data analysis tutorial: SDI (full-disk images)

LST data analysis tutorial: SDI continue

```
index2map, ohdr, oimg, sdimap
sub_map,sdimap,smap, xrange=[500,1100],yrange=[200, 1100]
window, 0, xsize=1600, ysize=800, retain=2
!p.multi=[0,2,1]
lst_lct, wavelnth = 1216, instr = 'sdi', /load
plot_map, sdimap, /log, dmin=10, dmax=14000, charsize=1.5
plot_map, smap, /log, dmin=10, dmax=14000, charsize=1.5
```

LST data analysis tutorial: SDI continue

ASO-S/LST payload and relevant HI Ly α and 360nm observations

Inflight calibrations

Data analysis guide

Thank you. Your comments are very welcome!